Biopolymers in Packaging

Section I:
Introduction

A. Study purpose
B. Key definitions
 1. Biopolymers
 2. Synthetic polymers
 3. Thermoplastic property
 4. Biodegradability and compostability
C. Study organization
D. Geographic regions
E. Study methodology
F. Conventions

Section II:
Executive Summary

A. Technology
 1. Raw materials
 2. Production processes
 3. Biopolymer processing and product performance
 4. End-of-life alternatives
 5. Biopolymer capacity
B. Economic and environmental analysis
 1. Economics
 2. Environmental
C. Market trends and drivers
 1. Greenhouse gas reduction
 2. Renewable sourcing
 3. Biodegradability
 4. Recyclability
 5. Drop-in replacements
 6. Synthetic polymer prices
D. Market projections
 1. Global biopolymer resin value
 2. Global biopolymer resin value in packaging
 3. Global biopolymer resin consumption
 4. Biopolymer volume in packaging segmented by plant source
 5. Biopolymer volume in packaging segmented by end-use
6. Biopolymer volume in packaging segmented by package type
7. Biopolymer consumption in packaging by geographic region

Section III:
Technology

A. Raw materials
 1. Starches
 2. Sugars
 3. Plant oils
 4. Proteins
 5. Cellulose

B. Monomers and polymers
 1. Polylactic acid (PLA)
 2. Polyhydroxyalkanoate (PHA)
 3. Polyethylene terephthalate (PET)
 4. Polytrimethylene terephthalate (PTT)
 5. Polyurethane (PU)
 6. Polyethylene (PE)
 7. Polypropylene (PP)
 8. Polyvinyl chloride (PVC)
 9. Polybutalene succinate (PBS)
 10. Cellulose ester (CE)
 11. Thermoplastic starch (TPS)

C. Converting to packaging
 1. Polylactic acid (PLA)
 2. Polyhydroxyalkanoate (PHA)
 3. Thermoplastic starch (TPS)

D. End-of-life options
 1. Biodegradability
 2. Composting
 3. Global compostable certifications
 4. Industrial and home comports
 5. Biopolymer compostability
 6. Petroleum based compostable materials
 7. Composting alternatives

E. Research and development
 1. Improve biopolymer performance
 2. Reduced production cost
 3. Improved environmental metrics
 4. Other

F. Biopolymer production capacities
 1. Polylactic acid (PLA)
2. Polyhydroxyalkanoate (PHA)
3. Polytrimethylene terephthalate (PTT)
4. Polyethylene terephthalate (PET)
5. Polyurethane (PU)
6. Polyethylene (PE)
7. Polypropylene (PP)
8. Polybutalene succinate (PBS)
9. Cellulose ester (CE)
10. Thermoplastic starch (TPS)
11. Polyamide (PA)
12. Polyvinyl chloride (PVC)

Section IV:
Economic and Environmental Impact

A. Economics
1. Economy of scale
2. Pricing strategy
3. Raw material costs

B. Environmental impact
1. Life cycle analysis
2. Projection
3. End-of-life alternatives

Section V:
Market Trends/Projections

A. Global biopolymer market
1. Cellulose esters (CE)
2. Polyamide (PA)
3. Polybutalene succinate (PBS)
4. Polyethylene (PE)
5. Polyethylene terephthalate (PET)
6. Polyhydroxyalkonates (PHA)
7. Polylactic acid (PLA)
8. Polypropylene (PP)
9. Polytrimethylene terephthalate (PTT)
10. Polyurethane (PU)
11. Polyvinyl chloride (PVC)
12. Thermoplastic starch (TPS)
13. Other

B. Biopolymers in packaging – market drivers and trends
1. Renewable sourcing
2. Biodegradability
3. Compostable certifications
4. Legislation
5. Environmental strategy
6. End-of-life alternatives
7. Manufacturing cost
8. Drop-in replacements
9. Consumer preference
10. Land use competition
11. Genetic research
12. Joint ventures
13. Environmental performance
14. Controlled waste markets
15. Market specific drivers

C. Biopolymers in the packaging industry

D. Cellulose ester (CE)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
 3. Suppliers
 4. Market value
 5. Cellulose ester volume segmented by end-use category
 6. Cellulose ester volume segmented by package type
 7. Cellulose ester volume segmented by geographic region

E. Polyamides

F. Polybutalene succinate (PBS)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
 3. Suppliers
 4. Market value
 5. Bio-PBS volume segmented by end-use category
 6. Bio-PBS volume in packaging by package type
 7. Bio-PBS volume by geographic region

G. Polyethylene (PE)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
 3. Supplier sales
 4. Market value
 5. Bio-PE volume segmented by end-use category
 6. Bio-PE volume segmented by package type
 7. Bio-PE volume by geographic region

H. Polyethylene terephthalate (PET)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
3. Supplier sales
4. Market value
5. Bio-PET packaging volume segmented by end-use
6. Bio-PET packaging volume segmented by package type
7. Bio-PET volume segmented by geographic region

I. Polyhydroxyalkonates (PHA)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
 3. Supplier sales
 4. Market value
 5. PHA volume segmented by end-use
 6. PHA volume segmented by package type
 7. PHA volume by geographic region

J. Polylactic acid (PLA)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
 3. Supplier sales
 4. Market value
 5. PLA packaging volume segmented by end-use
 6. PLA volume segmented by package type
 7. PLA volume by geographic region

K. Polypropylene (PP)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
 3. Supplier sales
 4. Market value
 5. Bio-PP packaging volume segmented by end-use
 6. Bio-PP volume segmented by package type
 7. Bio-PP volume by geographic region

L. Polytrimethylene terephthalate (PTT)

M. Thermoplastic polyurethane (TPU)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
 3. Supplier sales
 4. Market value
 5. Bio-TPU packaging volume segmented by end-use
 6. Bio-TPU volume segmented by package type
 7. Bio-TPU volume by geographic region

N. Polyvinyl chloride (PVC)

O. Thermoplastic starch (TPS)
 1. Separate sales volume in packaging from total sales volume
 2. Projection
3. Supplier sales
4. Market value
5. TPS packaging volume segmented by end-use
6. TPS volume segmented by package type
7. TPS volume by geographic region

P. Other
1. Separate sales volume in packaging from total sales volume
2. Projections
3. Supplier sales
4. Market value
5. Other biopolymer packaging volume segmented by end-use
6. Other biopolymer volume segmented by package type
7. Other biopolymer volume by geographic region

Q. Summary
1. Packaging volume summary
2. Biopolymer sales summary segmented by supplier
3. Market value summary

R. Biopolymer consumption in packaging by plant source
1. Separate sales volume in packaging from total sales volume
2. Corn
3. Other starch plants
4. Sugar cane
5. Other sugar plants
6. Soybean
7. Other oil based plants
8. Other

S. Biopolymer packaging volume segmented by end-use
1. Separate sales volume in packaging from total sales volume
2. Retail food
3. Retail non-food
4. Foodservice
5. Other

T. Biopolymer volume segmented by package type
1. Biopolymer volume by package type
2. Bags and pouches
3. Bottles, jars, and tubes
4. Carrier and waste bags
5. Cups, cartons, corrugated
6. Flexible film and lidstock
7. Pots
8. Transportation packaging
9. Trays and bowls
10. Other
U. Biopolymer volume in packaging by geographic region
 1. Separate sales volume in packaging from total sales volume
 2. Asia
 3. Europe
 4. North America
 5. ROW

Section VI:
 Producer Profiles

Section VII:
 Glossary